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We calculate the concentrations of vacancies and interstitials in the ground state 
of a Bose solid which models 4He. Because ground-state boson wave functions 
are nodeless, their probability densities correspond to classical Boltzmann 
factors, and properties of Bose solids, such as the concentration of vacancies 
and interstitials, can be calculated using classical statistical mechanics. We 
model the ground-state wave function of 4He with the product (Jastrow) form 
that corresponds to a classical l/r h pair potential, and use a quasiharmonic 
approximation to calculate the concentrations of vacancies and interstitials in 
an fcc lattice with this potential. We find that the fractional concentration of 
vacancies at the melting point is 1.60 x I0 -s  for 1/r 9 and 6.36 x 10 -6 for l/r 6, 
while the interstitial fractional concentrations are 1.32 • 10 -3 and 1.08 x 10 -5, 
respectively; the defect concentrations decrease by 7-16 orders of magnitude 
when the crystal density increases by 50 %. At the same density, and with the 
s a m e  l / r  9 potential, the concentration of vacancies in an hcp lattice is essentially 
the same as in an fcc lattice, but the interstitial concentration is much lower, 
apparently because the fcc lattice contains a more favorable split-interstitial site 
than does hcp. Therefore, our fcc vacancy results should be directly relevant for 
(hcp) 4He, providing what we think is a lower bound on the vacancy concentra- 
tion, while the interstitial concentration in 4He is probably much lower than our 
results. 

KEY W O R D S :  Vacancies; interstitials; solid helium. 

1. INTRODUCTION 

H e l i u m  h a s  l o n g  b e e n  o n e  o f  t h e  m o s t  i n t r i g u i n g  e l e m e n t s  t o  p h y s i c a l  s c i en -  

t ists ,  f o r  r e a s o n s  r a n g i n g  f r o m  i ts  i n e r t  c h e m i c a l  n a t u r e  t o  its a b u n d a n c e  in 

s t a r s  a n d  r a r i t y  o n  e a r t h .  F o r  c o n d e n s e d - m a t t e r  p h y s i c i s t s ,  h e l i u m  s t a n d s  

o u t  as  t h e  o n e  e l e m e n t  t h a t  r e m a i n s  a l i q u i d  w h e n  c o o l e d  a t  l o w  p r e s s u r e  to  
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0 K, due to its small mass and weak interaction potential. These combine to 
give helium enough zero-point quantum motion to prevent solidification; 
the large quantum effects have many other consequences for the liquid, 
including superfluidity and its associated striking phenomena. 

Quantum effects are also responsible for the possibility that an equi- 
librium helium crystal can contain point defects at 0 K, which cannot occur 
in a classical solid. Point defects, particularly vacancies, have been studied 
in solid 4He for many years. Much of the work has been motivated by the 
speculation that while a perfect crystal cannot Bose-condense, ~ the 
presence of vacancies in solid 4He could allow Bose condensation, giving 
the solid superfluid-like properties. 13-51 There have been theoretical estimates 
of the 0 K vacancy concentration (i.e., the fraction of crystal sites which are 
vacant) ranging from essentially zero 161 to 10-4,  ~71 and many experimental 
searches for vacancies and superfluid properties (recently reviewed by 
MeisepS~), which have placed an upper limit on the vacancy concentration 
of about 10 -4 . However, both the experimental and theoretical knowledge 
about 0 K vacancies in solid 4He is sketchy, and we have seen very little 
work on interstitials and other point defects. 

There is compelling reason to believe that solid 4He has an 
appreciable concentration of point defects as its 0 K melting point, as can 
be seen from the following argument. The ground-state wave function of N 
bosons is nodeless, and we can therefore choose its phase so that the 
square of the wave function (i.e., the probability density) is positive for all 
positions of the N atoms. An everywhere positive probability density can 
formally be written as exp(-cb/kB T), a classical Boltzmann distribution, 
which means that the ground-state Bose crystal is equivalent to a classical 
crystal with potential energy q~ at a positive temperature T, ~9~ and in fact 
when the 0 K 4He solid is at its 0 K melting pressure, the corresponding 
classical crystal is at its melting temperature. Classical solids at their melt- 
ing temperatures generally have appreciable concentrations of vacancies 
and interstitials, so unless the potential q~ corresponding to the 4He ground 
state is exceptional, we can also expect solid 4He to contain appreciable 
defect concentrations at its 0 K melting pointJ 4~ 

In this paper, we invoke the correspondence between the ground-state 
boson wave function and the classical potential to calculate the vacancy 
and interstitial concentrations in a tractable model for 4He using classical 
statistical mechanics. We choose the well-known Jastrow product form for 
the 4He wave function, which on the one hand exactly represents a 
legitimate boson model with a closed-form interaction [Eq. (11) below], 
and on the other hand simultaneously corresponds to a classical pairwise 
additive potential. Although Jastrow wave functions give very good 
energies in Monte Carlo calculations of liquid helium, for solid helium the 
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total energy is "unreasonably high ''t ~o~ unless the wave function is combined 
with, e.g., single-particle wave functions which localize the atoms at the 
lattice sites. Hansen and Pollock speculate that this is related to the fact t~~ 
that the vibrational amplitude at melting, as measured by the Lindemann 
ratio, is much higher when localizing wave functions are used rather than 
a pure Jastrow form; the high Lindemann ratio has been confirmed by later 
simulations that also give reasonable energies, 1~'~2~ but it has apparently 
never been experimentally measured for helium. Still, the localizing func- 
tions are unsatisfactory, since they remove the exchange and translational 
symmetry of the wave function t~31 and also complicate the calculation, so 
we do not use them in this paper. We also note that many-body terms 
could be combined with the Jastrow wave function to give a better descrip- 
tion of the quantum solid. However, these terms have been found to make 
a difference of only a few percent in Monte Carlo calculations t~~ of the 
pressure and energy of solid helium. Since their use would considerably 
lengthen our calculations, and their effect on defect concentrations is 
probably small, we do not include them. 

This paper thus addresses three objectives. The first is to argue that in 
principle the ground state of the 4He crystal must contain a nonvanishing 
concentration of point defects, most importantly vacancies. The second is 
to advocate the general formalism of classical statistical mechanics as an 
access route to quantitative study of those point defects. The third is to use 
the boson model generated by the Jastrow wave function to illustrate the 
second objective, and to provide a first rough estimate of the expected zero- 
point defect concentrations as a possibly helpful guide for experiment. 

2. CLASSICAL T H E R M O D Y N A M I C S  OF POINT DEFECTS 

As we mention above, there is a well-known ~9~ correspondence 
between the ground state of a Bose crystal and an equivalent classical crys- 
tal, arising because the ground-state wave function ~ is nodeless. This 
means that if we choose the phase appropriately, we can make ~u real 
everywhere, allowing us to write 

~(R)-] 
~U2(R) = exp [ kBTJ (1) 

where R represents the collective atom coordinate; fixing the arbitrary tem- 
perature T fixes the potential ~. Just as ~U2(R) is the probability of finding 
the configuration R in the quantum Bose crystal, exp[-q~(R)/kaT] is 
the probability of finding this configuration in the corresponding classical 
crystal with potential energy 45(R). We can exploit this correspondence to 
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use classical statistical mechanics to calculate certain properties, such as the 
concentration of point defects, of the ground state of a Bose crystal with a 
known wave function. 

In classical thermodynamics, equilibrium at constant volume and tem- 
perature corresponds to the minimum Helmholtz free energy F =  U - T S .  
We can write the Helmhoitz free energy for a crystal of N atoms and n 
noninteracting vacancies a s  114) 

F =  F* + n f  -- TSc (2) 

where F* is the free energy of a perfect crystal of N atoms with the same 
volume as the vacancy-containing crystal, S c = k B l n E ( N + n ) ! / ( n ! N ! ) ]  is 
the configurational entropy due to the placement of the n vacancies in the 
lattice, and f is the nonconfigurational part of the free energy cost of creat- 
ing a single vacancy. The equilibrium number of vacancies can be found by 
setting OF/Onl r. v = 0; for n ,~ N but still macroscopically large [-as we must 
have in order to use Eq. (2)], using Stirling's approximation, we find 
that 1~4) 

n = N exp( - f / k a  T)  (3) 

Other contributions to the configurational entropy can also be included 
as circumstances warrant. For instance, if the relaxation of the atoms 
around the vacancy site results in a state with lower symmetry (e.g., in an 
fcc lattice, if the 12 nearest neighbors of the vacancy rearrange into a con- 
figuration where two opposite atoms have moved symmetrically toward the 
vacancy) so that there are A possible orientations around each vacancy 
(A = 6 in the example), the configurational entropy has an additional term 
kB ln(A"), and so 

n = A N  exp( - f / k a  T)  (4) 

The quantity f has an interesting interpretation in the quantum 
regime. In the classical regime, f is the nonconfigurational part of the free 
energy difference between a crystal with a single vacancy and a perfect 
crystal. Since the configurational part of the free energy difference is 
- k a T l n ( N +  1), 

f =  F[1 vacancy] - F[perfect]  + kB TIn[-(N + 1 )] (5) 

where the free energies F now include the configurational parts, and since 
F = k a T l n Z ,  

n A Z,v[l  vacancy] 
(6) 

N N +  1 Zu[per fec t ]  
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Here Zu[configurat ion] is the N-atom partition function for the given 
configuration; i.e., the portion of the total N-atom partition function 
corresponding to a lattice with a single vacancy or a perfect lattice. In the 
quantum language, 

Zu [configuration] = f '  ~2(R) d3'VR (7) 

where the integral is restricted to the portion of R space that fits the 
particular configuration. That is, the quantum wave function ~u has some 
amplitude for configurations having different numbers of vacancies, and if 
the vacancies do not interact, their concentration is related to the ratio of 
the total probability amplitude for the zero- and one-vacancy configura- 
tions at the same total volume. Since it would be very difficult to include 
all possible numbers of vacancies in the quantum wave function, it is not 
clear to us in general how to calculate the vacancy concentration directly 
from Eqs. (6) and (7). In fact, the usual practice is to normalize the wave 
function so that the integral in Eq. (7) is identically 1 for the perfect crystal, 
and not to include the possibility of vacancies at all, even though the 
ground-state wave function for 4He should contain vacancies. This practice 
is not compatible with the above calculation. 

However, we can calculate f in the classical regime, starting with a 
quasiharmonic approximation (by quasiharmonic, we mean that the vibra- 
tional free energy depends on the density of the solid, ~141 whereas in a true 
harmonic approximation it would not) and appending anharmonic correc- 
tions from classical simulation if necessary. In this approach, the free 
energy consists of two parts: the internal nonvibrational potential energy 
"U, and the vibrational free energy of the 3 N -  3 normal modes in the crys- 
tal. ~14~ Taking these normal modes to be classical harmonic oscillators with 
frequencies oJj, and hence free energies kB Tln(Iw.~j/kBT), ItS~ we obtain 

f = ~1/'v - ",IF* + ~JB T ln(hco~!/k B T) - ~ kB T ln(hoJ~/kB T) 
J J 

(8) 

where the v superscript denotes a lattice with N atoms and one vacancy, 
and the �9 denotes a perfect lattice of N atoms. 

Similar expressions can also be derived for interstitials. The configura- 
tional entropy is S~=kB ln[Ns!/(n!(Ns-n)!], where Ns= A(N-n)  is the 
number of sites for interstitials, including the possibility of different orienta- 
tions in the site count. With this configurational entropy, Eq. (4) holds for 
interstitials, as does Eq. (8), substituting the superscript i for v, to denote 
a lattice with N atoms, one of which is an interstitial. 
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3. C A L C U L A T I O N  OF DEFECT C O N C E N T R A T I O N S  

As we see from the previous section, we can calculate the concentra- 
tions of vacancies and interstitials in a ground-state Bose crystal if we 
know its wave function, which gives us the equivalent classical potential 
q~(R), and if we can calculate the classical nonvibrational potential energy 
~//" and normal mode frequencies r for perfect and single-defect-containing 
N-atom crystals in this potential. Ideally, we would perform the calculation 
on an accurate model of a macroscopic helium crystal at various densities. 
However, in practice this is not possible, because the exact ground-state 
wave function of solid helium is not known, and because the computations 
required to find the normal modes and lattice energy for the relaxed (to 
mechanical equilibrium) defect-containing crystals limit the periodic cell 
size to something far smaller than macroscopic. To make the calculation 
feasible, we introduce several simplifications. 

To approximate the ground-state wave function of helium, we choose 
the convenient and often-used Jastrow wave function mentioned in 
Section 1 : 

7 t ( R ) = e x p [ - � 8 9  ~ v(r0) ] (9) 
<6> 

which corresponds to the classical pairwise additive potential 

~ ( R ) = k B T  ~ v(r~) (10) 
<o> 

It can be shown that this wave function is the exact ground state for the 
Schr6dinger equation with potential energy 

h2 [ <~> )] 
, 2 ,, 2 

V(R) = - -  ~ v (%.) - v (ro.) - - -  v'(r,j  
1~'1 .. F i j  

h 2 
+ - -  ~ [v ' ( ro)  v ' ( r i l , ) c o s O j i k + ( c y c l i c i n i j k ) ]  (11) 

m <6k> 

where 0jik is the angle between rij and r~k. In our calculations, we use the 
pseudopotential 

v(r)  = (a / r )  b (12) 

This pseudopotential is often used for helium, I~~ although pseudopoten- 
tials giving better variational energies have certainly been found, 1'6) 
because of the computational advantages shown below. We choose a so 
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that the density of the classical crystal at its melting point, as found by 
Hoover et al.,  07) matches the 0 K density of 4He at its melting point 
(e.g., a = 1.16 for b = 6 and 0.990 for b = 9 in units of the 4He melting- 
point lattice spacing). The quantum potential energy whose ground 
state is this particular Jastrow wave function has the pair potential 
(hZ/m)eb2ff2b/rZb+2-b(b-1) 6b/p'b+2]; like the real helium interaction, 
this pair potential is strongly repulsive as r -~ 0 and attractive as r --+ oo. 

Given an approximate wave function, to calculate the defect concen- 
trations we need the nonvibrational potential energy (i.e., the sum over all 
pairs of atoms of the classical pair potential) of perfect and single-defect- 
containing lattices of N atoms in the equivalent classical regime. This is 
calculated at mechanical equilibrium, which we reach in the defect-contain- 
ing lattices by minimizing the total lattice energy (the perfect lattice is 
already in a state of mechanical equilibrium); this is the most time-con- 
suming part of our calculation, because it requires repeated summing over 
all pairs of atoms. We use periodic boundary conditions and sum over the 
nearest image of each pair of atoms in the periodic cell, and we report 
results for cells as large as 216 atoms. 

We also need the vibrational frequencies of the normal modes in the 
perfect and defect-containing lattices. In the quasiharmonic approximation, 
each component of the displacement from the equilibrium position of an 
atom obeys t ~8) 

i'l i = - - ~ ,  k~l~lj 
J 

where the Hessian matrix is ~18) 

(13) 

1 02~ 
k o. (14) 

m Oui ,~uj 

m is the mass of an atom, and the dots indicate time derivatives. Assuming 
that the atoms vibrate with amplitudes u ~ and a common frequency co, we 
find that Eq. (13) implies that 1~8~ 

o E k , j u  o 115) CO-Il i 
J 

i.e., the squared normal mode frequencies o~ 2 are the eigenvalues of the 
Hessian matrix for the lattice. The second derivatives of �9 for our choice 
of wave function are trivial to calculate analytically, so once the mechanical 
equilibrium configuration has been found for a lattice, the Hessian matrix 
is easily computed and diagonalized. 
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Using periodic boundary conditions introduces one extra complication 
into the calculation: the number of lattice sites is fixed, for a given periodic 
cell size, so that in practice the number of atoms used in the vacancy- 
(interstitial-) containing lattice is one less (more) than the number in the 
perfect lattice, whereas Eq. (8) calls for a fixed number of atoms in a fixed 
volume. With two changes, we can correct for the difference: first, we adjust 
the lattice spacing in the defect-containing lattice so that the number 
density is the same for the defect-containing and perfect lattices. Second, 
because the free energy for the perfect lattice can be regarded as distributed 
evenly among all the atoms (or normal modes, for the vibrational part), we 
scale the perfect-lattice free energy so that it corresponds to the same 
number of atoms (normal modes) as the defect-containing lattice, with the 
calculated free energy per atom (normal mode) of the perfect lattice. With 
these two changes, Eq. (8) becomes 

f l ,~[a ~'] ( _ ~ ) , ~ * [ a * ]  
kBT kBT  kB T  

+ Z In\ ~ } ' N - 6 , = ,  fh~o}[a"]~_(N_2) 3, v - 3 ~  ,=~" In\(h~ } (16) 
for vacancies, and 

kBT  kBT  kBT  

3 N  In (li~ 3N-3 In (hco*Ea*]'] + (17) 
" =  . '=  

for interstitials, where a" = ( ( N -  1 )/N) '/3 a*, a i= ((N + 1 )/N) t/3 a*, and a* 
are the lattice spacings for the vacancy-containing, interstitial-containing, 
and perfect lattices, respectively, and N is the number of atoms in the 
perfect lattice. 

We can now use Eqs. (16) and (17) in Eq. (4) to calculate the concen- 
tration of point defects in our Bose solid, However, the calculation would 
be too lengthy to carry out at many densities if it were not for the well- 
known 1~7~ scaling properties of the 1/r b classical potential: if we scale all 
lengths by a factor c, the potential energy is scaled by a factor of 1/c b. This 
means that / r  and the coj for a certain lattice spacing aj are related to the 
quantities for a different lattice spacing a2 by 

 ea,l (ag  = -= CrEa2] 
kar l  

(18) 

kay~ 
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In other words, we only need to calculate the nonvibrational potential 
energy and the normal-mode frequencies of the perfect, vacancy-containing, 
and interstitial-containing lattices for one lattice spacing, and when we 
scale by appropriate factors, we will know the defect concentrations for all 
lattice spacings. Using a subscript 0 to refer to a quantity calculated at unit 
lattice spacing using the 1/r b pair potential, we find the final expression for 
the single-defect free energy when the lattice spacing in the perfect lattice 
is a* and the classical pair potential is kB T(a/r)b: 

F ( ~ ) ~  (N--I'~ 
f = ( ~ * ) b L k N - - l J  

] 
kB T o \ N ,) ~Ir ~a 

j=, L k N -  1] 

. :  
--2 ~-2- ~ J=~ ln[(~ooj ) ] (19) 

for vacancies, and 

kBT 
1 [(  N ~ ~b+2'/3 ] 

+~ ~, In L\N-~i,/ (c%J)2 
j = l  

- -  In [(c%j) ] (20) 
2 i=~ 

for interstitials. Note that in the final expressions for the vibrational part 
o f f ,  the factors of h/kBT from Eq.(8) and the mass appearing in the 
Hessian matrix (14) cancel out because of the logarithms; all factors of a 
and a also cancel out of the vibrational free energy. The first two cancella- 
tions would occur for any pair potential, because they only depend on 
there being the same number of normal-mode terms for the perfect and 
defect-containing crystals, but the last two depend on the scaling properties 
of the 1/r b potentials. 

One final note on the computation is that we, like most researchers 
who have done calculations on 4He, use an fcc lattice, even though 4He is 
hcp at the 0 K melting point. This practice is partially justified by the 
calculations of Hansen and Pollock, t~~ who find very similar values for the 
energy and other properties on hcp and fcc lattices in 1/r 5 pseudopotentials 
with Gaussian localization functions. Furthermore, by performing lattice 
sums, it can be shown that with a classical 1/r b pair potential, the fcc lattice 

822/78/1-2-9 
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has a very slightly lower lattice potential energy than the hcp lattice when 
b >/5, suggesting that the fcc structure is slightly more stable with these 
potentials. However, Hansen and Pollock's simulated helium solid can 
apparently be induced to condense either into an fcc or hcp structure, 
depending on where the localization functions are centered, and we expect 
that without localization functions, in calculations with few atoms the 
periodic boundary conditions completely determine which crystal structure 
is more likely. We use an fcc structure mainly because the classical melting 
points 1~71 (used to choose the appropriate a to match the helium melting 
point density) have only been determined for fcc lattices, and only for 
b = 4 ,  6, 9, and 12. So we find it convenient to limit ourselves to these 
values of b and to an fcc lattice, and then to compare the fcc results 
to those found in an hcp lattice at the same densities using the same 
potential. 

4. R E S U L T S  

As outlined in the previous section, the calculation of the defect con- 
centration for a given number of atoms N in the perfect lattice and a given 
value of b proceeds with the following steps. First, we remove an atom 
from the perfect lattice with unit lattice spacing (or add an atom to it) and 
relax to a minimum in the summed 1/r b pair potential. This step in the 
calculation requires some care, because a configuration may be a local 
minimum in many directions in configuration space and still be neither a 
global nor a local minimum. So, to guarantee we are at a local minimum 
(to a tolerance of 10 - 6  in energy), we first minimize using the conjugate 
gradient method, t~91 then we minimize along random directions for each 
particle until the energy no longer changes, change the random directions, 
and repeat until the energy does not change; and finally we minimize along 
the eigenvectors of the Hessian matrix, followed by random directions for 
each particle, until the energy no longer changes. 

The next step is to calculate and diagonalize the Hessian matrices for 
the perfect and defect-containing lattices in their relaxed configurations. 
Then, we use the energies found in the minimization step and the Hessian 
matrix eigenvalues to calculate the free energies of Eqs. (19) and (20) as a 
function of density. The energy tolerance of 10 - 6  in the relaxation of the 
lattice corresponds to a fractional error of a few times 10 - 4  in the free 
energies. 

We have calculated the single-vacancy and single-interstitial free 
energies for the 1/I "6 and 1/r 9 potentials of fcc lattices ranging from 27 to 
216 atoms; the results are shown in Fig. 1. The defect concentrations can 
be computed from the free energies using Eq. (4}. We find that there are 
three possible configurations for an interstitial at a given site [A = 3 in 
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Fig. 1. Single-defect free energy f/ksT (left scale) and Iogt~; of defect number  density (right 
scale) as a function of lattice spacing (bottom scale, in units of the lattice spacing at the 
melting point) and density (top scale, in units of the 0 K melting point density) in Jastrow 
wave function fcc Bose solids with l / r  h pseudopotentials. We show results for b = 9, (a) vacan- 
cies and (b) interstitials, and b = 6, (c) vacancies and (d) interstitials, for periodic cells ranging 
in size from 3 x 3 x 3 to 6 x 6 x 6 atoms on the same plot. 
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Eq. (4)]:  an interstitial a tom always pairs with another a tom to form a 
so-called "split interstitial," and we find that a split interstitial at a given 
lattice site can be oriented in three equivalent directions, along any of the 
three lines joining two opposite squares in the nearest-neighbor polyhedron 
(see Fig. 2a), and that the nearest-neighbor polyhedron distorts around the 
pair. For  vacancies, the relaxed configurations we find show a slight inward 
shift of the 12 nearest neighbors toward the vacant lattice site, retaining the 
symmetry of the lattice, so A = 1. Using these values of A, we find that the 
vacancy concentration at the melting point is 1.60x 10 -5 for 1/r 9 and 
6.36x 10 -6 for 1/r 6, while the interstitial concentrations are 1.32x 10 -3 
and 1.08 x 10 -5, respectively; the defect concentrations are 7-16 orders of 
magnitude smaller when the density is 50 % higher (see Fig. I). 

We have also calculated the defect concentrations on a 216-atom hcp 
lattice with the (a/r) 9 potential. Since we do not know the melting point of 
the hcp 1/I .9 crystal, we use the same a as in the fcc calculation, and present 
the results in Fig. 3 using the same units for a as in the fcc calculation. The 

(a) 

(b) 

Fig. 2. (a) An fcc iattice site and the polyhedron formed by its 12 nearest neighbors. Note 
that each square face is opposite another square face, and each triangular face is opposite 
another triangular face. (b) The same view of the nearest-neighbor polyhedron for an hcp 
lattice, where now the square faces are opposite the triangular faces. 
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Fig. 3. The single-vacancy and single-interstitial free energies for a 6 x 6 x 6 cell hcp lattice 
with a 1/r '~ potential, and the vacancy concentration (the interstitial concentration is a factor 
of A higher than the right axis, but we have not been able to determine A), Comparing to 
Fig. I, we see that the vacancy concentration is substantially the same as in an fcc lattice, 
while the interstitial concentration is much lower. 

vacancy c o n c e n t r a t i o n  is essent ial ly the same, over the whole  densi ty  range,  
as in an  fcc lattice, which is no t  surpr is ing,  because of the s imilar i ty  
be tween the two lattices. F o r  the interst i t ial ,  we found  several very different 
(local energy m i n i m u m )  conf igura t ions  which were wi th in  one par t  in 10 6 
in total  latt ice energy,  so we c a n n o t  be cer ta in  that  we have found  the 
lowest-energy state for the in te r s t i t i a l - con ta in ing  lattice. However ,  all con-  
f igurat ions  we found  led to s ingle- inters t i t ia l  free energies ( 3 - 4 ) k B  T higher  
than  in an  fcc lattice at the same densi ty,  appa ren t ly  because an  hcp lattice 
does no t  con t a in  as conven i en t  a place for an  inters t i t ia l  a t o m  as does an  
fcc latt ice (see Fig. 2b). Because of the difficulty in f inding the lowest-energy 
state, we c a n n o t  de te rmine  A (and  hence the interst i t ial  c o n c e n t r a t i o n )  for 
the hcp interst i t ial ,  bu t  unless ,4 is wildly different from the fcc value of 3, 
the interst i t ial  conc en t r a t i o n  in an  hcp latt ice mus t  be 1-2 orders  of 
m a g n i t u d e  less t han  in fcc. 



Poin t  De fec t s  in Crystalline 4He at  0 K 131 

5. DISCUSSION 

It might seem surprising that we can obtain meaningful results using 
such a small number (N~< 216) of particles when the defect concentrations 
we calculate are much smaller than 1IN. However, Fig. 1 does show a clear 
convergence with the size of the periodic cell, and the reason for the con- 
vergence becomes clear when we consider the sources of small-N errors. 
First, we use a nearest image cutoff for the potential, which means that the 
largest discarded terms in the potential energy are for pair distances that 
are about half the size of the periodic cell. For an M x M x M periodic cell 
and a 1/r b potential, we discard (.9(M 2) of these largest terms, while 
keeping (_9(M 3) terms at close to unit pair distance, so the error is 
(9[ (1 /M)(2 /M)b] .  This is a few percent for M =  3, but it rapidly decreases 
to about 10 -4 at M =  5 for b = 6 and M =  4 for b = 9. 

A second source of small-N error is that instead of having a single 
defect in a very large crystal, or many noninteracting defects, as the ideal 
calculation calls for, we have many periodic images of the defect which can 
interact through lattice-mediated elasticity. However, since the defects are 
separated by twice the nearest-image cutoff, and there are many more 
nearby discarded images than defects, this is a much smaller source of error 
than the nearest image cutoff. 

Other sources of possible inaccuracies in our calculation are not 
directly related to the periodic cell size. First, the melting density for the 
(if~r) b potentials t17~ has not been determined to arbitrary precision, which 
introduces some error in the choice of the a that matches the melting point 
of helium to the melting point of the Jastrow wave function. Analyzing 
Eqs. (19) and (20), we see that the fractional error in the defect density n /N  
due to error in a obeys 

A(n/N) fNv Ao" 
- - ~  - -  ( 2 1 )  
(n /N)  k B T  cr 

where fNv is the nonvibrational part of the single-defect free energy at the 
density of interest. As this is around 10ka T at the melting point, a 1% 
error in a makes a 10% error in n/N. 

The quasiharmonic approximation used in this calculation is another 
possible source of inaccuracy. However, Hoover et aL ~7~ find that the free 
energy calculated in this approximation agrees with their Monte Carlo 
results for 1/r h potentials on perfect lattices up to the melting point, with 
approximately the same size error as the nearest image cutoff, and we 
expect this also to hold for defect-containing lattices. The difference 
between fcc and hcp lattices could also contribute to error in this calcula- 
tion, since solid 4He is hcp, and our calculation is done on an fcc lattice. 
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As we have seen, at the same density and with the same potential, the con- 
centration of vacancies in an hcp lattice with b = 9 is very close to the con- 
centration in an fcc lattice. However, the concentration of interstitials is 
apparently much lower in the hcp lattice, due to the lack of good sites for 
split interstitials in the hcp lattice. So, we believe that the fcc vacancy 
calculations are directly relevant for helium, while the fcc interstitial 
calculations provide an upper bound on the concentration in helium. 

Finally, we ~hould also point out that Hoover et al. ~2~ have found 
that the equilibrium 1/r b melting-point solid is actually bcc, not fcc, for 
b ~< 6; the bcc region of the phase diagram is quite small for b = 6, tzl) allow- 
ing a metastable fcc solid to exist at the melting point. However, for b = 4, 
the bcc region is much larger, which strongly disagrees with what is found 
in the 4He phase diagram, and for that reason we have chosen not to 
consider b < 6 Jastrow wave functions. It is possible that an fcc solid with 
the equilibrium number of vacancies and interstitials would be more stable 
than a bcc solid for b = 6 at the melting point, since the defects lower the 
free energy, but we have not done the calculation necessary to check this. 

Still, even with these sources of possible errors, this calculation does 
provide what we hope is a close lower bound on the concentration of 
vacancies in 0 K solid 4He. We claim that it is a lower bound because, as 
we noted in Section 1, the Jastrow wave function for solid helium permits 
less atomic motion locally (in particular, there is less atomic motion in the 
neighborhood of a vacancy) than other wave functions which yield better 
energies in Monte Carlo calculations. "~ Presumably a solid with less zero- 
point motion has fewer 0 K vacancies (certainly this is true in the extreme 
case of a classical solid with no zero-point motion, which can have no 0 K 
vacancies), so if the wave functions yielding better energies for helium are 
also more representative of its zero-point motion, the pure Jastrow solid 
would have fewer vacancies than real solid 4He. 

Our calculation also provides a motivation for more theoretical and 
experimental work on defects in solid 4He. On the theoretical side, it would 
be instructive to calculate the defect concentrations in hcp helium instead 
of fcc, and to use a more realistic wave function for solid 4He. The exten- 
sion to hcp using the Jastrow wave function would only require calculation 
of the melting point for the 1/r b hcp solids; using a more realistic wave 
function would require a much longer calculation, because the scaling 
properties of the 1/r b potentials could no longer be exploited. We are not 
certain how the defect concentrations could best be found in the sort of 
Monte Carlo calculations that have yielded good energies for 4He, but this 
should probably be explored. 

The prediction of positive vacancy and interstitial concentrations in 
the ground state for our model indicates that it is Bose-condensed; ~2-5'8J the 
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same should be true for crystalline 4He, and it is therefore of some interest 
to calculate the condensed fraction in our model. It has been pointed out 
before "'z2) that the presence of a condensate produces off-diagonal long- 
range order in the single-particle reduced density matrix 

or(r, r ' ) =  Cf ~g(r, r z ..... rN) ~U(r', r_, ..... rN) d3r2 .. "d3ru (22) 

(C is related to the normalizing factor for the ground-state wave function 
~g). For a structurally perfect crystal, p~ will vanish unless r and r' are 
localized near a common lattice site. However, the presence of point defects 
permits r and r '  to drift away from one another to arbitrary relative posi- 
tions in the crystal. Using the Jastrow wave function of Eq. (9), we can 
transform Eq. (22) into 

p~(r,r')=C f exp {-�89 
u N } 

[v(r u) + v(,'2j)] - ~ v(rij) d3r2 ...d3ru 
2'=2 ( q ) '  

(23) 

where the second sum is over pairs of atoms, excluding atom 1. This last 
expression can be interpreted as the classical probability for configurations 
of two "half particles" embedded in a medium of N -  1 "full particles," so 
a classical simulation could be used to investigate the density matrix and 
thereby estimate the condensate fraction in our model. Because the defect 
concentrations appear to be small, the condensate fraction is certainly 
also small, perhaps partially explaining the failure so far to observe a con- 
densation phase transition or "supersolid" flow behavior in crystalline 
4He.(8) 

Of course, it is important to combine this theoretical work with 
further experiments. We would like to see a measurement of the vacancy 
and interstitial concentrations in solid 4He as a function of density, inde- 
pendent of any possible Bose condensation. Unfortunately, it is apparently 
not clear at this point how to measure such small concentrations, and 
presumably the presence of both vacancies and interstitials would make 
independent measurements of either difficult. However, it might be possible 
to separate the vacancies and interstitials using an electric field. Since 
4He is a dielectric, its atoms are attracted to regions of strong electric 
field; i.e., interstitials are attracted to high-field regions, and vacancies 
are repelled from, them. By contrast, as we see in Fig. 1, external pressure 
affects the two types of defects in the same way, so employing both types 
of crystal perturbations could in principle provide the concentrations 
independently. 
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A C K N O W L E D G M E N T S  

W e  t h a n k  T o m  M a c F a r l a n d  fo r  m a n y  h e l p f u l  d i s c u s s i o n s  a n d  fo r  

p o i n t i n g  o u t  s e v e r a l  r e l e v a n t  r e f e r e n c e s .  W e  a l s o  t h a n k  P r o f .  Ve i t  E l s e r  fo r  

a d i s c u s s i o n  w h i c h  led  to  t h e  i d e a  o f  t h e  e l e c t r i c  f ield e x p e r i m e n t s .  
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