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We calculate the concentrations of vacancies and interstitials in the ground state
of a Bose solid which models *He. Because ground-state boson wave functions
are nodeless, their probability densities correspond to classical Boltzmann
factors, and properties of Bose solids, such as the concentration of vacancies
and interstitials, can be calculated using classical statistical mechanics. We
model the ground-state wave [unction of *He with the product (Jastrow) form
that corresponds to a classical 1/r® pair potential, and use a quasiharmonic
approximation to calculate the concentrations of vacancies and interstitials in
an fcc lattice with this potential. We find that the fractional concentration of
vacancies at the melting point is 1.60 x 10~* for 1/r* and 6.36 x 10~ for 1/rS,
while the interstitial fractional concentrations are 1.32x 10~% and 1.08 x 1073,
respectively; the defect concentrations decrease by 7-16 orders of magnitude
when the crystal density increases by 50%. At the same density, and with the
same 1/r® potential, the concentration of vacancies in an hcp lattice is essentially
the same as in an fcc lattice, but the interstitial concentration is much lower,
apparently because the fcc lattice contains a more favorable split-interstitial site
than does hcp. Therefore, our fcc vacancy results should be directly relevant for
(hep) “He, providing what we think is a lower bound on the vacancy concentra-
tion, while the interstitial concentration in “He is probably much lower than our
results.
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1. INTRODUCTION

Helium has long been one of the most intriguing elements to physical scien-
tists, for reasons ranging from its inert chemical nature to its abundance in
stars and rarity. on earth. For condensed-matter physicists, helium stands
out as the one element that remains a liquid when cooled at low pressure to
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0 K, due to its small mass and weak interaction potential. These combine to
give helium enough zero-point quantum motion to prevent solidification;
the large quantum effects have many other consequences for the liquid,
including superfluidity and its associated striking phenomena.

Quantum effects are also responsible for the possibility that an equi-
librium helium crystal can contain point defects at 0 K, which cannot occur
in a classical solid. Point defects, particularly vacancies, have been studied
in solid “He for many years. Much of the work has been motivated by the
speculation that while a perfect crystal cannot Bose-condense,"?’ the
presence of vacancies in solid “He could allow Bose condensation, giving
the solid superfluid-like properties.*~> There have been theoretical estimates
of the 0 K vacancy concentration (i.e., the fraction of crystal sites which are
vacant) ranging from essentially zero‘® to 10~%,"") and many experimental
searches for vacancies and superfluid properties (recently reviewed by
Meisel'®'), which have placed an upper limit on the vacancy concentration
of about 10 ~* However, both the experimental and theoretical knowledge
about 0 K vacancies in solid *He is sketchy, and we have seen very little
work on interstitials and other point defects.

There is compelling reason to believe that solid “He has an
appreciable concentration of point defects as its 0 K melting point, as can
be seen from the following argument. The ground-state wave function of N
bosons is nodeless, and we can therefore choose its phase so that the
square of the wave function (i.e., the probability density) is positive for all
positions of the N atoms. An everywhere positive probability density can
formally be written as exp(—®/kyzT), a classical Boltzmann distribution,
which means that the ground-state Bose crystal is equivalent to a classical
crystal with potential energy @ at a positive temperature 7, and in fact
when the 0 K “He solid is at its 0 K melting pressure, the corresponding
classical crystal is at its melting temperature. Classical solids at their melt-
ing temperatures generally have appreciable concentrations of vacancies
and interstitials, so unless the potential ® corresponding to the “He ground
state is exceptional, we can also expect solid ‘He to contain appreciable
defect concentrations at its 0 K melting point.'*

In this paper, we invoke the correspondence between the ground-state
boson wave function and the classical potential to calculate the vacancy
and interstitial concentrations in a tractable model for *He using classical
statistical mechanics. We choose the well-known Jastrow product form for
the “He wave function, which on the one hand exactly represents a
legitimate boson model with a closed-form interaction [Eq. (11) below],
and on the other hand simultaneously corresponds to a classical pairwise
additive potential. Although Jastrow wave functions give very good
energies in Monte Carlo calculations of liquid helium, for solid helium the
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total energy is “unreasonably high”"'® unless the wave function is combined
with, e.g., single-particle wave functions which localize the atoms at the
lattice sites. Hansen and Pollock speculate that this is related to the fact!'?
that the vibrational amplitude at melting, as measured by the Lindemann
ratio, is much higher when localizing wave functions are used rather than
a pure Jastrow form; the high Lindemann ratio has been confirmed by later
simulations that also give reasonable energies,''"'? but it has apparently
never been experimentally measured for helium. Still, the localizing func-
tions are unsatisfactory, since they remove the exchange and translational
symmetry of the wave function''*’ and also complicate the calculation, so
we do not use them in this paper. We also note that many-body terms
could be combined with the Jastrow wave function to give a better descrip-
tion of the quantum solid. However, these terms have been found to make
a difference of only a few percent in Monte Carlo calculations"'® of the
pressure and energy of solid helium. Since their use would considerably
lengthen our calculations, and their effect on defect concentrations is
probably small, we do not include them.

This paper thus addresses three objectives. The first is to argue that in
principle the ground state of the “He crystal must contain a nonvanishing
concentration of point defects, most importantly vacancies. The second is
to advocate the general formalism of classical statistical mechanics as an
access route to quantitative study of those point defects. The third is to use
the boson model generated by the Jastrow wave function to illustrate the
second objective, and to provide a first rough estimate of the expected zero-
point defect concentrations as a possibly helpful guide for experiment.

2. CLASSICAL THERMODYNAMICS OF POINT DEFECTS

As we mention above, there is a well-known®’ correspondence
between the ground state of a Bose crystal and an equivalent classical crys-
tal, arising because the ground-state wave function ¥ is nodeless. This
means that if we choose the phase appropriately, we can make ¥ real
everywhere, allowing us to write

¢(R)] (1)

P2(R)=exp I: ~%T
B

where R represents the collective atom coordinate; fixing the arbitrary tem-
perature T fixes the potential @. Just as ¥3(R) is the probability of finding
the configuration R in the quantum Bose crystal, exp[ ~®(R)/kyT] is

the probability of finding this configuration in the corresponding classical
crystal with potential energy @(R). We can exploit this correspondence to
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use classical statistical mechanics to calculate certain properties, such as the
concentration of point defects, of the ground state of a Bose crystal with a
known wave function.

In classical thermodynamics, equilibrium at constant volume and tem-
perature corresponds to the minimum Helmholtz free energy F=U— TS.
We can write the Helmholtz free energy for a crystal of N atoms and »
noninteracting vacancies as'4)

F=F*+nf—TS, )

where F* is the free energy of a perfect crystal of N atoms with the same
volume as the vacancy-containing crystal, S, =kgIn[(N+n)Y/(n'N1)] is
the configurational entropy due to the placement of the n vacancies in the
lattice, and f is the nonconfigurational part of the free energy cost of creat-
ing a single vacancy. The equilibrium number of vacancies can be found by
setting 6F/0n| . ,,=0; for n < N but still macroscopically large [as we must
have in order to use Eq.(2)], using Stirling’s approximation, we find
that'"

n=Nexp(—flkyT) (3)

Other contributions to the configurational entropy can also be included
as circumstances warrant. For instance, if the relaxation of the atoms
around the vacancy site results in a state with lower symmetry (e.g., in an
fce 1attice, if the 12 nearest neighbors of the vacancy rearrange into a con-
figuration where two opposite atoms have moved symmetrically toward the
vacancy) so that there are 4 possible orientations around each vacancy
(A =6 in the example), the configurational entropy has an additional term
kgIn(A4”"), and so

n=AN exp(—flkuyT) (4)

The quantity f has an interesting interpretation in the quantum
regime. In the classical regime, f is the nonconfigurational part of the free
energy difference between a crystal with a single vacancy and a perfect
crystal. Since the configurational part of the free energy difference is
—kgTIn(N+1),

S =F[1vacancy] — F[perfect] + kg TIn[(N +1)] (5)

where the free energies F now include the configurational parts, and since
F=kyTn Z,

n _ A Zy[l vacancy] (6)
N N+1 Z,[perfect]
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Here Z,[configuration] is the N-atom partition function for the given
configuration; i.e., the portion of the total N-atom partition function
corresponding to a lattice with a single vacancy or a perfect lattice. In the
quantum language,

Z y[configuration] = r P2(R) d* R (7

where the integral is restricted to the portion of R space that fits the
particular configuration. That is, the quantum wave function ¥ has some
amplitude for configurations having different numbers of vacancies, and if
the vacancies do not interact, their concentration is related to the ratio of
the total probability amplitude for the zero- and one-vacancy configura-
tions at the same total volume. Since it would be very difficult to include
all possible numbers of vacancies in the quantum wave function, it is not
clear to us in general how to calculate the vacancy concentration directly
from Egs. (6) and (7). In fact, the usual practice is to normalize the wave
function so that the integral in Eq. (7) is identically 1 for the perfect crystal,
and not to include the possibility of vacancies at all, even though the
ground-state wave function for “He should contain vacancies. This practice
is not compatible with the above calculation.

However, we can calculate f in the classical regime, starting with a
quasiharmonic approximation (by quasiharmonic, we mean that the vibra-
tional free energy depends on the density of the solid,''*’ whereas in a true
harmonic approximation it would not) and appending anharmonic correc-
tions from classical simulation if necessary. In this approach, the free
energy consists of two parts: the internal nonvibrational potential energy
7", and the vibrational free energy of the 3N — 3 normal modes in the crys-
tal.''¥ Taking these normal modes to be classical harmonic oscillators with
frequencies w;, and hence free energies kg T In(hw;/ky T),"*’ we obtain

f=7" =9 *4Y jeThn(ha' kg T) =Y ky TIn(hw}/kyT)  (8)
J J

where the v superscript denotes a lattice with N atoms and one vacancy,
and the * denotes a perfect lattice of N atoms.

Similar expressions can also be derived for interstitials. The configura-
tional entropy is S, =kg In[Ng!/(n{(Ng—n)!], where Ng= A(N —n) is the
number of sites for interstitials, including the possibility of different orienta-
tions in the site count. With this configurational entropy, Eq. (4) holds for
interstitials, as does Eq. (8), substituting the superscript i for v, to denote
a lattice with N atoms, one of which is an interstitial.
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3. CALCULATION OF DEFECT CONCENTRATIONS

As we see from the previous section, we can calculate the concentra-
tions of vacancies and interstitials in a ground-state Bose crystal if we
know its wave function, which gives us the equivalent classical potential
@(R), and if we can calculate the classical nonvibrational potential energy
¥~ and normal mode frequencies w; for perfect and single-defect-containing
N-atom crystals in this potential. Ideally, we would perform the calculation
on an accurate model of a macroscopic helium crystal at various densities.
However, in practice this is not possible, because the exact ground-state
wave function of solid helium is not known, and because the computations
required to find the normal modes and lattice energy for the relaxed (to
mechanical equilibrium) defect-containing crystals limit the periodic cell
size to something far smaller than macroscopic. To make the calculation
feasible, we introduce several simplifications.

To approximate the ground-state wave function of helium, we choose
the convenient and often-used Jastrow wave function mentioned in
Section 1:

W(R)=exp[—é 5 v(n,-)] ©)

<>

which corresponds to the classical pairwise additive potential

®R)=ksT ¥ v(r,) (10)
iy

It can be shown that this wave function is the exact ground state for the
Schrodinger equation with potential energy

2
V(R)= Z {v (ry)? —v"(ry)—— u’(r,-j):l
T > ry
+h—; Y [v'(ry) v'(ryg) cos 8, + (cyclic in ijk) ] (11)

ik

where 0, is the angle between r; and r,. In our calculations, we use the
pseudopotential
o(r) = (a/r)® (12)

This pseudopotential is often used for helium,'*'" although pseudopoten-
tials giving better variational energies have certainly been found,!®
because of the computational advantages shown below. We choose ¢ so
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that the density of the classical crystal at its melting point, as found by
Hoover et al,"'” matches the 0K density of “He at its melting point
{(e.g, o=1.16 for b=6 and 0.990 for b=9 in units of the *He melting-
point lattice spacing). The quantum potential energy whose ground
state is this particular Jastrow wave function has the pair potential
(#¥/m)[b%c**/r?**2 —b(b—1) 6”/r®*2]; like the real helium interaction,
this pair potential is strongly repulsive as r — 0 and attractive as r — c0.

Given an approximate wave function, to calculate the defect concen-
trations we need the nonvibrational potential energy (i.e., the sum over all
pairs of atoms of the classical pair potential) of perfect and single-defect-
containing lattices of N atoms in the equivalent classical regime. This is
calculated at mechanical equilibrium, which we reach in the defect-contain-
ing lattices by minimizing the total lattice energy (the perfect lattice is
already in a state of mechanical equilibrium); this is the most time-con-
suming part of our calculation, because it requires repeated summing over
all pairs of atoms. We use periodic boundary conditions and sum over the
nearest image of each pair of atoms in the periodic cell, and we report
results for cells as large as 216 atoms.

We also need the vibrational frequencies of the normal modes in the
perfect and defect-containing lattices. In the quasiharmonic approximation,
each component of the displacement from the equilibrium position of an
atom obeys''®

==Y kyu (13)
J
where the Hessian matrix is"'®
1 0°9
2 14
Y mou, du; (14)

m is the mass of an atom, and the dots indicate time derivatives. Assuming
that the atoms vibrate with amplitudes ¥? and a common frequency w, we
find that Eq. (13) implies that!'®

wiul =Y kyug (15)
j.

ie., the squared normal mode frequencies w? are the eigenvalues of the
Hessian matrix for the lattice. The second derivatives of @ for our choice
of wave function are trivial to calculate analytically, so once the mechanical
equilibrium configuration has been found for a lattice, the Hessian matrix
is easily computed and diagonalized.
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Using periodic boundary conditions introduces one extra complication
into the calculation: the number of lattice sites is fixed, for a given periodic
cell size, so that in practice the number of atoms used in the vacancy-
(interstitial-) containing lattice is one less (more) than the number in the
perfect lattice, whereas Eq. (8) calls for a fixed number of atoms in a fixed
volume. With two changes, we can correct for the difference: first, we adjust
the lattice spacing in the defect-containing lattice so that the number
density is the same for the defect-containing and perfect lattices. Second,
because the free energy for the perfect lattice can be regarded as distributed
evenly among all the atoms (or normal modes, for the vibrational part), we
scale the perfect-lattice free energy so that it corresponds to the same
number of atoms (normal modes) as the defect-containing lattice, with the
calculated free energy per atom (normal mode) of the perfect lattice. With
these two changes, Eq. (8) becomes

L_“//””[a”]_(N—l) ¥ *¥[a*]
kgyT  kgT N kyT

IN-6 fiw][a"] N—_2)\ 3N-3 hwFla*]
~ () -(=) ne(r) e

j=1 j=1

for vacancies, and

S Ve <N+ 1) 7" *[a*]

koT  kpT N kT

L fiwila'] N N\ =3 sho*[a*]
+ In L ) - ( ) In <——j ) 17
(%) (75 2T (4
for interstitials, where a* = ((N—1)/N)'® a*, o' = (N + 1)/N)'? a*, and a*
are the lattice spacings for the vacancy-containing, interstitial-containing,
and perfect lattices, respectively, and N is the number of atoms in the
perfect lattice.

We can now use Egs. (16) and (17) in Eq. (4) to calculate the concen-
tration of point defects in our Bose solid. However, the calculation would
be too lengthy to carry out at many densities if it were not for the well-
known'” scaling properties of the 1/r" classical potential: if we scale all
lengths by a factor ¢, the potential energy is scaled by a factor of 1/c®. This
means that ¥~ and the w, for a certain lattice spacing a, are related to the
quantities for a different lattice spacing a, by

V4] = (Z—) ¥[as]

5 a, b+2 , (]8)
wa]=(2) " wifa)
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In other words, we only need to calculate the nonvibrational potential
energy and the normal-mode frequencies of the perfect, vacancy-containing,
and interstitial-containing lattices for one lattice spacing, and when we
scale by appropriate factors, we will know the defect concentrations for all
lattice spacings. Using a subscript 0 to refer to a quantity calculated at unit
lattice spacing using the 1/r® pair potential, we find the final expression for
the single-defect free energy when the lattice spacing in the perfect lattice
is a* and the classical pair potential is kg T{(a/r)®:

ar () [5) (5 7]

1 3IN—-6 N (b+2)/3
LE ) wr]

J=1

N 2 IN—-3
_Z(N ) Y In[(wf)*] (19)

Jj=1

for vacancies, and
L= <i)b ( N )b/J Vi (N+ 1 4//*
kg T \a* N+1 0 N
1 3N N (b+2)3 .
2 Z n [<N+ 1) (w"’)z]
1 N IN-3
—§< > Z In[(w (20)

Jj=1

for interstitials. Note that in the final expressions for the vibrational part
of f, the factors of #/ky T from Eq.(8) and the mass appearing in the
Hessian matrix (14) cancel out because of the logarithms; all factors of ¢
and a also cancel out of the vibrational free energy. The first two cancella-
tions would occur for any pair potential, because they only depend on
there being the same number of normal-mode terms for the perfect and
defect-containing crystals, but the last two depend on the scaling properties
of the 1/r® potentials.

One final note on the computation is that we, like most researchers
who have done calculations on “He, use an fcc lattice, even though “He is
hcp at the 0 K melting point. This practice is partially justified by the
calculations of Hansen and Pollock,"'® who find very similar values for the
energy and other properties on hcp and fcc lattices in 1/r® pseudopotentials
with Gaussian localization functions. Furthermore, by performing lattice
sums, it can be shown that with a classical 1/r® pair potential, the fcc lattice

822/78/1-2-9
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has a very slightly lower lattice potential energy than the hcp lattice when
b= 5, suggesting that the fcc structure is slightly more stable with these
potentials. However, Hansen and Pollock’s simulated helium solid can
apparently be induced to condense either into an fcc or hcp structure,
depending on where the localization functions are centered, and we expect
that without localization functions, in calculations with few atoms the
periodic boundary conditions completely determine which crystal structure
is more likely. We use an fec structure mainly because the classical melting
points"”) (used to choose the appropriate ¢ to match the helium melting
point density) have only been determined for fcc lattices, and only for
b=4,6,9, and 12. So we find it convenient to limit ourselves to these
values of b and to an fcc lattice, and then to compare the fcc results
to those found in an hcp lattice at the same densities using the same
potential.

4. RESULTS

As outlined in the previous section, the calculation of the defect con-
centration for a given number of atoms N in the perfect lattice and a given
value of b proceeds with the following steps. First, we remove an atom
from the perfect lattice with unit lattice spacing (or add an atom to it) and
relax to a minimum in the summed 1/r® pair potential. This step in the
calculation requires some care, because a configuration may be a local
minimum in many directions in configuration space and still be neither a
global nor a local minimum. So, to guarantee we are at a local minimum
(to a tolerance of 10~° in energy), we first minimize using the conjugate
gradient method,'®) then we minimize along random directions for each
particle until the energy no longer changes, change the random directions,
and repeat until the energy does not change; and finally we minimize along
the eigenvectors of the Hessian matrix, followed by random directions for
each particle, until the energy no longer changes.

The next step is to calculate and diagonalize the Hessian matrices for
the perfect and defect-containing lattices in their relaxed configurations.
Then, we use the energies found in the minimization step and the Hessian
matrix eigenvalues to calculate the free energies of Egs. (19) and (20) as a
function of density. The energy tolerance of 10~° in the relaxation of the
lattice corresponds to a fractional error of a few times 10™* in the free
energies.

We have calculated the single-vacancy and single-interstitial free
energies for the 1/r® and 1/r® potentials of fcc lattices ranging from 27 to
216 atoms; the results are shown in Fig. 1. The defect concentrations can
be computed from the {ree energies using Eq. (4). We find that there are
three possible configurations for an interstitial at a given site [4=3 in
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Fig. 1. Single-defect free energy f/kgT (left scale) and log,, of defect number density (right
scale) as a function of lattice spacing (bottom scale, in units of the lattice spacing at the
melting point) and density (top scale, in units of the 0 K melting point density) in Jastrow
wave function fcc Bose solids with 1/r* pseudopotentials. We show results for =9, (a) vacan-
cies and (b) interstitials, and b = 6, (c¢) vacancies and (d) interstitials, for periodic cells ranging
in size from 3x3x3 to 6 x6 x6 atoms on the same plot.
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Eq. (4)]: an interstitial atom always pairs with another atom to form a
so-called “split interstitial,” and we find that a split interstitial at a given
lattice site can be oriented in three equivalent directions, along any of the
three lines joining two opposite squares in the nearest-neighbor polyhedron
(see Fig. 2a), and that the nearest-neighbor polyhedron distorts around the
pair. For vacancies, the relaxed configurations we find show a slight inward
shift of the 12 nearest neighbors toward the vacant lattice site, retaining the
symmetry of the lattice, so 4 =1. Using these values of 4, we find that the
vacancy concentration at the melting point is 1.60x 107> for 1/r° and
6.36 x 10~% for 1/rS, while the interstitial concentrations are 1.32x 103
and 1.08 x 10>, respectively; the defect concentrations are 7-16 orders of
magnitude smaller when the density is 50% higher (see Fig. 1).

We have also calculated the defect concentrations on a 216-atom hcp
lattice with the (o/r)° potential. Since we do not know the melting point of
the hep 1/r° crystal, we use the same ¢ as in the fcc calculation, and present
the results in Fig. 3 using the same units for @ as in the fcc calculation. The

(a) »

Fig. 2. (a) An fec lattice site and the polyhedron formed by its 12 nearest neighbors. Note
that each square face is opposite another square face, and each triangular face is opposite
another triangular face. (b) The same view of the nearest-neighbor polyhedron for an hcp
lattice, where now the square faces are opposite the triangular [aces.



130 Hodgdon and Stillinger

Density
1.5 12 1.0 08 06
L 1 L I 1 &
(=]
\
\
\
8+ \ \
\ - N
\ d
\
\
\
\ .
\ — N
\\ e g
g - ' 2
\ <
5 \ .8
) \ Fo §
c \ 9 “ 3
@ N W= hep <
g N Vacancies ‘g’
w \ ———— Interslitials a
2
=
< £
g

Lattice spacing

Fig. 3. The single-vacancy and single-interstitial free energies for a 6 x 6 x 6 cell hep lattice
with a 1/r° potential, and the vacancy concentration (the interstitial concentration is a flactor
of A higher than the right axis, bul we have not been able to determine 4). Comparing to
Fig. 1, we see that the vacancy concentration is substantially the same as in an fcc lattice,
while the interstitial concentration is much lower.

vacancy concentration is essentially the same, over the whole density range,
as in an fcc lattice, which is not surprising, because of the similarity
between the two lattices. For the interstitial, we found several very different
(local energy minimum) configurations which were within one part in 10°
in total lattice energy, so we cannot be certain that we have found the
lowest-energy state for the interstitial-containing lattice. However, all con-
figurations we found led to single-interstitial free energies (3—4) k5 T higher
than in an fcc lattice at the same density, apparently because an hcp lattice
does not contain as convenient a place for an interstitial atom as does an
fce lattice (see Fig. 2b). Because of the difficulty in finding the lowest-energy
state, we cannot determine A4 (and hence the interstitial concentration) for
the hep interstitial, but unless A4 is wildly different from the fcc value of 3,
the interstitial concentration in an hcp lattice must be 1-2 orders of
magnitude less than in fcc.
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5. DISCUSSION

It might seem surprising that we can obtain meaningful results using
such a small number (N <216) of particles when the defect concentrations
we calculate are much smaller than 1/N. However, Fig. 1 does show a clear
convergence with the size of the periodic cell, and the reason for the con-
vergence becomes clear when we consider the sources of small-N errors.
First, we use a nearest image cutoff for the potential, which means that the
largest discarded terms in the potential energy are for pair distances that
are about half the size of the periodic cell. For an M x M x M periodic cell
and a 1/r® potential, we discard @(M?) of these largest terms, while
keeping (O(M?) terms at close to unit pair distance, so the error is
O[(1/M)(2/M)"]. This is a few percent for M =3, but it rapidly decreases
to about 10~* at M=5for b=6 and M =4 for b=9.

A second source of small-N error is that instead of having a single
defect in a very large crystal, or many noninteracting defects, as the ideal
calculation calls for, we have many periodic images of the defect which can
interact through lattice-mediated elasticity. However, since the defects are
separated by twice the nearest-image cutoff, and there are many more
nearby discarded images than defects, this is a much smailer source of error
than the nearest image cutoff.

Other sources of possible inaccuracies in our calculation are not
directly related to the periodic cell size. First, the melting density for the
(a/r)® potentials'” has not been determined to arbitrary precision, which
introduces some error in the choice of the o that matches the melting point
of helium to the melting point of the Jastrow wave function. Analyzing
Eqs. (19) and (20}, we see that the fractional error in the defect density n/N
due to error in o obeys

A(n/N) _fuv 4o
(n/N) ~ kT o

(21)

where fyy is the nonvibrational part of the single-defect free energy at the
density of interest. As this is around 10k, T at the melting point, a 1%
error in ¢ makes a 10% error in n/N.

The quasiharmonic approximation used in this calculation is another
possible source of inaccuracy. However, Hoover et al.'” find that the free
energy calculated in this approximation agrees with their Monte Carlo
results for 1/r® potentials on perfect lattices up to the melting point, with
approximately the same size error as the nearest image cutoff, and we
expect this also to hold for defect-containing lattices. The difference
between fcc and hep lattices could also contribute to error in this calcula-
tion, since solid “He is hcp, and our calculation is done on an fcc lattice.
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As we have seen, at the same density and with the same potential, the con-
centration of vacancies in an hcp lattice with » =9 is very close to the con-
centration in an fcc lattice. However, the concentration of interstitials is
apparently much lower in the hcp lattice, due to the lack of good sites for
split interstitials in the hcp lattice. So, we believe that the fcc vacancy
calculations are directly relevant for helium, while the fcc interstitial
calculations provide an upper bound on the concentration in helium.

Finally, we should also point out that Hoover et al.®® have found
that the equilibrium 1/ meiting-point solid is actually bec, not fec, for
b < 6; the bee region of the phase diagram is quite small for b = 6,! allow-
ing a metastable fcc solid to exist at the melting point. However, for =4,
the bec region is much larger, which strongly disagrees with what is found
in the “He phase diagram, and for that reason we have chosen not to
consider b < 6 Jastrow wave functions. It is possible that an fcc solid with
the equilibrium number of vacancies and interstitials would be more stable
than a bce solid for 5= 6 at the melting point, since the defects lower the
free energy, but we have not done the calculation necessary to check this.

Still, even with these sources of possible errors, this calculation does
provide what we hope is a close lower bound on the concentration of
vacancies in 0 K solid “He. We claim that it is a lower bound because, as
we noted in Section 1, the Jastrow wave function for solid helium permits
less atomic motion locally (in particular, there is less atomic motion in the
neighborhood of a vacancy) than other wave functions which yield better
energies in Monte Carlo calculations.!” Presumably a solid with less zero-
point motion has fewer 0 K vacancies (certainly this is true in the extreme
case of a classical solid with no zero-point motion, which can have no 0K
vacancies), so if the wave functions yielding better energies for helium are
also more representative of its zero-point motion, the pure Jastrow solid
would have fewer vacancies than real solid “He.

Our calculation also provides a motivation for more theoretical and
experimental work on defects in solid “He. On the theoretical side, it would
be instructive to calculate the defect concentrations in hcp helium instead
of fcc, and to use a more realistic wave function for solid “He. The exten-
sion to hcp using the Jastrow wave function would only require calculation
of the melting point for the 1/r® hep solids; using a more realistic wave
function would require a much longer calculation, because the scaling
properties of the 1/r® potentials could no longer be exploited. We are not
certain how the defect concentrations could best be found in the sort of
Monte Carlo calculations that have yielded good energies for “*He, but this
should probably be explored.

The prediction of positive vacancy and interstitial concentrations in
the ground state for our model indicates that it is Bose-condensed;>">® the
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same should be true for crystalline “He, and it is therefore of some interest
to calculate the condensed fraction in our model. It has been pointed out
before:??) that the presence of a condensate produces off-diagonal long-
range order in the single-particle reduced density matrix

pr, )= CJ P(r, Ty By} P(X, Egyey T) drs - dry, (22)

(C is related to the normalizing factor for the ground-state wave function
¥). For a structurally perfect crystal, p, will vanish unless r and r’ are
localized near a common lattice site. However, the presence of point defects
permits r and r’ to drift away from one another to arbitrary relative posi-
tions in the crystal. Using the Jastrow wave function of Eq. (9), we can
transform Eq. (22) into

N N
pilr, T')=Cjex9{_% Z [v(?'lf)'*‘v("z;)]— Z U(’g)} d3r2“'d3rN (23)
j=2 <"

where the second sum is over pairs of atoms, excluding atom 1. This last
expression can be interpreted as the classical probability for configurations
of two “half particles” embedded in a medium of N — 1 “full particles,” so
a classical simulation could be used to investigate the density matrix and
thereby estimate the condensate fraction in our model. Because the defect
concentrations appear to be small, the condensate fraction is certainly
also small, perhaps partially explaining the failure so far to observe a con-
densation phase transition or “supersolid” flow behavior in crystalline
‘He.®

Of course, it is important to combine this theoretical work with
further experiments. We would like to see a measurement of the vacancy
and interstitial concentrations in solid *He as a function of density, inde-
pendent of any possible Bose condensation. Unfortunately, it is apparently
not clear at this point how to measure such small concentrations, and
presumably the presence of both vacancies and interstitials would make
independent measurements of either difficult. However, it might be possible
to separate the vacancies and interstitials using an electric field. Since
“He is a dielectric, its atoms are attracted to regions of strong electric
field; ie., interstitials are attracted to high-field regions, and vacancies
are repelled from them. By contrast, as we see in Fig. 1, external pressure
affects the two types of defects in the same way, so employing both types
of crystal perturbations could in principle provide the concentrations
independently.
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